Anti-symplectic Involution and Maslov Indices

نویسنده

  • SHENGDA HU
چکیده

We carry out some first steps in setting up a theory for Lagrangian Floer theory, mimicking Seidel’s construction for Hamiltonian Floer homology [7], for the subgroup HamL(M,ω) of Ham(M,ω) which preserves the Lagrangian L. When the symplectic manifold M has anti-symplectic involution c and L is the fixed Lagrangian submanifold, we consider the subgroup Hamc(M,ω) which commute with c. In the later case, we relate the critical points of the two Floer theories and their Maslov indices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 2 00 7 A topological theory of Maslov indices for Lagrangian and symplectic paths

We propose a topological theory of the Maslov index for lagrangian and symplectic paths based on a minimal system of axioms. We recover , as particular cases, the Hörmander and the Robbin–Salomon indices.

متن کامل

Hörmander-Kashiwara and Maslov indices

Given a finite-dimensional symplectic vector space, we first study the fundamentals group of the space of symplectomorphisms and the space of Lagrangians to construct Maslov indices of loops in these spaces. Then we introduce Hörmander-Kashiwara index of a Lagrangian triple and use it to define Maslov indices counting the number of intersections of two paths of Lagrangians or symplectomorphisms...

متن کامل

Geometrical properties of Maslov indices in periodic-orbit theory

Maslov indices in periodic-orbit theory are investigated using phase space path integral. Based on the observation that the Maslov index is the multi-valued function of the monodromy matrix, we introduce a generalized monodromy matrix in the universal covering space of the symplectic group and show that this index is uniquely determined in this space. The stability of the orbit is shown to dete...

متن کامل

Action-Maslov Homomorphism for Monotone Symplectic Manifolds

Action-Maslov Homomorphism for Monotone Symplectic Manifolds

متن کامل

A Morse Index Theorem for Elliptic Operators on Bounded Domains

We consider a second-order, selfadjoint elliptic operator L on a smooth one-parameter family of domains {Ωt}t∈[a,b] with no assumptions on the geometry of the Ωt’s. It is shown that the Morse index of L can be equated with the Maslov index of an appropriately defined path in a symplectic Hilbert space constructed on the boundary of Ωb. Our result is valid for a wide variety of boundary conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005